Математические кружки

Математическая кружка и все

From: Victor Glukhov
To: Denis Chebikin
Subj:спасибо за идею!
Date: 28.11.2001

 

Привет, Денис!

Спасибо тебе огромное за идею! По-моему, она великолепна!!! Я, правда, изрядно помучился и позлился, прежде чем нашел раскраску семью красками, но зато и счастья было до неба!

Как раз сегодня провел занятие по твоей задаче. Но еще за пару дней до него опубликовал ее на "Кружках" и предложил школьникам подумать над вариантами раскраски. Конечно, времени у них было маловато, но одна девочка (между прочим, Тая Шантар) пришла не с пустыми руками: она доказала, что двух красок не хватит.

А занятие я построил примерно так. Сформулировав основную задачу, я предложил решить ее сначала не для плоскости, а для прямой. С этим они довольно быстро справились. Конечно, они разбили прямую на отрезки длиной 1 и покрасили их, чередуя два цвета. Мне казалось важным показать им и принципиально иной подход: красить не промежутками, а точками (например, на [0;1) все рациональные точки красным, а иррациональные - синим; на [1;2) - наоборот, и т.д. - эдакий математический пуантилизм). Мне казалось это важным, т.к. те же два подхода можно пытаться реализовывать и на плоскости... Но все же я не решился уводить их так далеко в сторону.

От разбиения прямой на отрезки школьники довольно легко перешли к разбиению плоскости сеткой сначала почему-то... треугольников. Наверное, воспользоваться квадратами мешала уверенность в том, что сторона ячейки должна быть именно 1. Впрочем, и это вскоре было осознано, и плоскость была разбита на квадратики с диагональю 1. Тогда им и было предложено придумать раскраску 9-ю красками. А тем, кто придумает 9-ю, - 8-ю. А тем, кто придумает 8-ю, - 7-ю.

Первую раскраску придумали почти все, вторую - многие, третью - никто. Но я не стал им демонстрировать решение. Задача стоит того, чтобы они поломали голову недельку.

Затем Тая показала доказательство недостаточности двух красок. С тремя красками - я сделал чертеж и попросил довести рассуждение до конца самостоятельно.

Подводя итоги, я сообщил школьникам, что если они дорешают оставшиеся задачи до конца, то убедятся, что правильный ответ - 4, 5, 6 или 7. И что им нужно будет сделать, чтобы понять, какой именно. И добавил, что этого до сих пор не сделал никто. По-моему, мне удалось их удивить.

Нет, это замечательная идея! Здорово то, что школьники столкнулись с математической задачей, содержание которой им вполне доступно, но тем не менее - не решенной!

Спасибо еще раз.

Что касается планов, обязательно ими займусь не позднее ближайшего уикенда. И хочу по мотивам сегодняшнего занятия сделать листочек с задачами.

Счастливо.

Твой ВВГ

Вернуться в учительскую

 

Top.LV
TopList